首页> 学院概况> 教师风采> 正文
种晓宇
发布日期:2024年09月25日 浏览次数:


种晓宇,男,教授,博士生导师/硕士生导师。

个人简介:

1989年出生,山东济宁人,党员,2021年11月破格晋升教授,曾任美国宾夕法尼亚州立大学研究助理教授,中国科协青年人才托举工程入选者、共青团中央全国向上向善好青年(创新创业)、云南省产业创新人才、云南省优秀青年基金获得者,云南省/昆明理工大学高层次引进人才,首届云南创新之星。担任《Rare Metals》、《稀有金属》,《中国有色金属学报》中、英文版,《MGE Advances》,《Journal of Materials Informatics》《稀有金属材料与工程》等期刊青年编委,中国稀土学会热防护材料分会副主任委员,中国材料研究学会计算材料学分会/难熔金属分会委员,中国硅酸盐学会特陶分会理事。

截至2024年8月,主持国家/省部级科研项目23项;在Nature Commun、JACS、Acta Mater等期刊上发表论文100余篇,包括4篇封面文章,1篇Editor Choice亮点文章,总引用3300余次,H因子32,为Nature Commun、Scripta Mater等十几种期刊审稿人,出版专著1部,入选2023年度全球前2%顶尖科学家榜单;受邀在国内国际学术会议作大会/邀请报告30余次;授权国家发明专利49项,美国、日本、澳大利亚等国外专利5项,实现成果转化20项;登记软件著作权12项;主持制订云南省地方标准1项;获云南省技术发明一等奖、中国稀土科学技术奖一等奖、日内瓦国际发明展金奖、中国发明协会发明创业奖创新奖一等奖等科研奖励7项,6项科技成果被评价为“国际领先水平”。

获云南省教学成果奖二等奖1项,指导学生获中国国际“互联网+”大学生创新创业大赛国家银奖2项,指导学生获批国家创新创业训练计划项目2项,担任班主任并带领班级获得“云南省级先进班集体”荣誉称号,指导的硕士、博士生均获得国奖、省奖等各类奖学金、优秀毕业生和省/校级优秀毕业论文等。

联系方式:

云南省昆明市五华区学府路253号昆明理工大学材料大楼

617458806(微信)

xiaoyuchong@kust.edu.cn , 617458806@qq.com

研究方向:

(1)高通量第一性原理计算、相图热力学、多场耦合有限元和机器学习等多尺度集成的模型、算法和软件开发

(2)材料智能计算、智能实验和智能制造技术,材料数据库,材料基因工程,材料大模型和小模型

(3)贵金属新材料,超高温结构陶瓷与涂层材料,极端条件用铁、钛、铝基合金材料和复合材料

讲授课程:

本科生:(1)材料分析测试技术;(2)材料基因工程;(3)材料智能设计与制造;(4)专业英语

研究生:(1)材料分析测试技术;(2)材料基因组工程

在研项目:

(1)国家级创新项目课题:XX涂层设计、制备与性能评价(主持)

(2)国家级创新项目课题:变组分温压相图建模与计算方法研究(主持)

(3)国家自然科学基金:基于TiB2韧性和基体强度协同提高条件下原位TiB2/Fe基复合材料强韧化机制研究(主持)

(4)国家重点研发计划子课题:利用深度学习进行膜层材料能带、晶格和热应力匹配度的优化研究(主持)

(5)云南省重大科技专项:自主可控材料设计工业软件的关键技术研究(主持)

(6)云南省重大科技专项,基于材料基因工程的1300℃Pt-Ir基合金粘结层研制及应用示范(主持)

(7)云南省优秀青年基金,基于材料基因工程的贵金属高温合金设计与应用(主持)

(8)云南省实验室重大专项:基于机器学习模型的材料设计方法及应用软件开发(Ⅰ期)(技术负责人)

(9)云南省重大科技专项课题:基于高通量计算和机器学习的铱合金成分优化(主持)

(10)云南省科技厅-昆明理工大学“双一流”联合创建联合专项重点项目:基于高通量计算和机器学习的铂基合金抗高温蠕变性能研究(主持)

(11)云南省基础研究计划青年基金:高导热铝合金强度与热输运性质间的协同优化研究(主持)

(12)云南省“兴滇英才支持计划”产业创新人才培养经费支持(主持)

(13)国家重点实验室开放课题:海洋用钛合金应力腐蚀多尺度建模与集成计算研究(主持)

(14)国家工程实验室开放课题:耐磨钢铁中碳/硼化物硬质相结构与性质的高通量计算及材料基因数据库的初步建立(主持)

(15)种晓宇博士科研平台建设项目(主持)

(16)企业横向:轻质高强钢性能及熔炼规格提升技术开发(主持)

(17)企业横向:深海钛合金蠕变速率预测模型构建(主持)

(18)企业横向:深海钛合金应力腐蚀多尺度集成计算(主持)

(19)企业横向:超高温高熵陶瓷计算设计(主持)

(20)企业横向:超高温高熵合金/陶瓷复合材料模拟计算与设计(主持)

(21)企业横向:基于材料多尺度计算的Sn-In-TM(Ag, Cu, Zn, Bi等)合金成分设计与物性优化(主持)

(22)企业横向:Pt-Ru-X(X=Rh、Re)合金成分和物性的智能优化设计(主持)

(23)企业横向:材料智能计算与设计(主持)

科研成果:

代表性论文

(1)XiaoYu Chong*, Jorge Paz Soldan Palma, Yi Wang, et al. Thermodynamic properties of the Yb-Sb system predicted from first-principles calculations, Acta Materialia, 2021, 217, 117169.

(2)XiaoYu Chong, MingYu Hu, Peng Wu, et al. Tailoring the anisotropic mechanical properties of hexagonal M7X3 (M=Fe, Cr, W, Mo; X=C, B) by multialloying,Acta Materialia, 2019, 169, 193-208.

(3)Mengdi Gan, Xiaoyu Chong*, Tianlong Lu, Chao Yang, et al. Unveiling thermal stresses in RETaO4 (RE= Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er) by first-principles calculations and finite element simulations, Acta Materialia, 2024, 271: 119904.

(4)Wei Yu, Xiaoyu Chong*, Yingxue Liang, Xingyu Gao, et al. Discovering novel γ-γ′ Pt-Al superalloys via lattice stability in Pt3Al induced by local atomic environment distortion, Acta Materialia 281 (2024) 120413.

(5)Y Wang, F Lia, K Wang, K McNamara, Y Ji, Xiaoyu Chong, et al. A thermochemical database from high-throughput first-principles calculations and its application to analyzing phase evolution in AM-fabricated IN718, Acta Materialia, 2022, 240: 118331.

(6)XiaoYu Chong, Pin-Wen Guan, MingYu Hu, et al. Exploring accurate structure, composition and thermophysical properties of η carbides in 17.90 wt% W-4.15 wt% Cr-1.10 wt% V-0.69 wt% C steel, Scripta Materialia, 2018, 154, 149-153.

(7)Yi Wang, XiaoYu Chong*, et al. An alternative approach to predict Seebeck coefficients: Application to La3−xTe4, Scripta Materialia, 2019, 169, 87-91.

(8)J Wang, XiaoYu Chong, R Zhou, J Feng, et al. Microstructure and thermal properties of RETaO4 (RE= Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials, Scripta Materialia, 2017, 126: 24-28.

(9)Lin Chen, Mingyu Hu, Jun Guo, XiaoYu Chong*, Jing Feng*. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase. Journal of Materials Science & Technology, 2020, 52, 20-28.

(10)J Wang, Xiaoyu Chong*, L Lv, Y Wang, X Ji, H Yun, J Feng*.High-entropy ferroelastic (10RE0. 1) TaO4 ceramics with oxygen vacancies and improved thermophysical properties. Journal of Materials Science & Technology, 2023, 157: 98-106.(热点+高被引论文)

(11)M Gan, L Lai, J Wang, J Wang, L Chen, J He, J Feng, Xiaoyu Chong*. Suppressing the oxygen-ionic conductivity and promoting the phase stability of the high-entropy rare earth niobates via Ta substitution. Journal of Materials Science & Technology, 2025, 209: 79-94.

(12)M Gan, T Lu, W Yu, J Feng, Xiaoyu Chong*. Capturing and visualizing the phase transition mediated thermal stress of thermal barrier coating materials via a cross-scale integrated computational approach. Journal of Advanced Ceramics, 2024, 13(4).(高被引)

(13)Peng Wu, MingYu Hu, XiaoYu Chong*, Jing Feng. The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising thermal barrier coating application. Applied Physics Letters, 2018, 112 (13), 131903.

(14)XiaoYu Chong, Shun-Li Shang, A M Krajewski, et al. Correlation analysis of materials properties by machine learning: Illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys. Journal of Physics: Condensed Matter, 2021, 33, 295702.

(15)Yunxuan Zhou, Wei Yu, XiaoYu Chong*, et al. Rapid screening of alloy elements to improve the elastic properties of dilute Pt-based alloys: High-throughput first-principles calculations and modeling. Journal of Applied Physics, 2020, 128, 235103.

(16)W Yu, Xiaoyu Chong*, M Gan, Y Wei, et al. Exploring the solution strengthening effect of 33 alloying elements in Pt-based alloys by high-throughput first-principles calculations. Journal of Applied Physics, 2022, 131(18).

(17)JPS Palma, XiaoYu Chong, Y Wang, SL Shang, ZK Liu. Thermodynamic re-modeling of the Yb-Sb system aided by first-principles calculations[J]. Calphad, 2023, 81: 102541.

(18)C Yang, Xiaoyu Chong*, M Hu, W Yu, J He, Y Zhang, J Feng, et al. Accelerating the discovery of hybrid perovskites with targeted band gaps via interpretable machine learning. ACS Applied Materials & Interfaces, 2023, 15(34): 40419-40427.

(19)L Lai, M Gan, J Wang, L Chen, X Liang, J Feng, XiaoYu Chong*. New class of high‐entropy rare‐earth niobates with high thermal expansion and oxygen insulation. Journal of the American Ceramic Society, 2023, 106(7): 4343-4357.(高被引论文)

(20)M Gan, Xiaoyu Chong*, W Yu, B Xiao, J Feng. Understanding the ultralow lattice thermal conductivity of monoclinic RETaO4 from acoustic-optical phonon anti-crossing property and a comparison with ZrO2. Journal of the American Ceramic Society, 2023, 106(5): 3103-3115.(高被引论文)

(21)Jun Wang, Fushuo Wu, Jing Feng, XiaoYu Chong*. High-entropy ferroelastic rare-earth tantalite ceramic: (Y0.2Ce0.2Sm0.2Gd0.2Dy0.2)TaO4. Journal of the American Ceramic Society, 2021, 104: 5873-5882.

(22)XiaoYu Chong, YeHua Jiang, Rong Zhou, Jing Feng. Multi-alloying effect on thermophysical properties of Cr7C3 type carbides. Journal of the American Ceramic Society, 2017, 100(4): 1588-1597. (封面论文)

(23)Yun-Xuan Zhou, Ying Zhou, Peng Wu, Peng Song, Xiao-Yu Chong*, Jing Feng, Thermal properties of Y1-xMgxTaO4-x/2 ceramics via anion sublattice adjustment. Rare Metals, 2020,39(5):545–554. (封面论文)

(24)XiaoYu Chong, YeHua Jiang, Rong Zhou, et al. Electronic structure, anisotropic elastic and thermal properties of the η phase Fe6W6C. Computational Materials Science, 2015, 108: 205-211. (编辑选择)

(25)XiaoYu Chong, GuangChi Wang, Yehua Jiang, Jing Feng. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites During Solidification Process. Acta Metall Sin, 2018, 54 (2), 314-324. (封面论文)

(26)Zhen-Hua Ge1, Dongsheng Song1, XiaoYu Chong1, et al. Boosting the Thermoelectric Performance of (Na, K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering. Journal of the American Chemical Society, 2017, 139 (28), 9714-9720 (共同一作)

(27)Mingyu Hu, Min Chen, Peijun Guo, Hua Zhou, Junjing Deng, Yudong Yao, Yi Jiang, Jue Gong, Zhenghong Dai, Yunxuan Zhou, Feng Qian, Xiaoyu Chong, et al. Sub-1.4 eV bandgap inorganic perovskite solar cells with long-term stability. Nature communications, 2020, 11(1): 151.

(28)汪俊,张宇轩,种晓宇,张志彬,梁秀兵,冯晶,高温热障涂层材料研究进展,中国有色金属学报,2022, 32(12): 3758 −3779.(2022年度优秀论文)

(29)种晓宇,汪广驰,蒋业华,冯晶,耐磨钢铁材料中强化相设计与性质计算研究进展,中国材料进展,2019,38(12),1145-1158. (封面论文)

专著

种晓宇,抗磨钢铁材料中强化相的微结构计算与性能研究. 2018.12, 北京,科学出版社

软件著作权

(1)热力学性质高通量计算软件 [简称:FastThermo] V1.0

(2)热导率高通量计算软件 [简称:FastKappa] V1.0

(3)力常数提取软件[简称:FC-EXTRACTOR] V1.0

(4)贵金属合金与涂层材料数据库系统V1.0

(5)基于跨尺度建模与参数自动传递的构建蠕变性能高通量计算软件[简称:AutoCreepFlow] V1.0

(6)用于CALPHAD自动集成建模的热力学数据批量提取软件[简称:ProME-MFP2JSON] V1.0

(7)基于CALPHAD的温度-组分相图自动集成建模和优化软件[简称:ProME-AutoCalphad-TC] V1.0

(8)基于CALPHAD的温度-压强相图自动集成建模和优化软件[简称:ProME-AutoCalphad-TP] V1.0

(9)硬质相数据库与机器学习平台[简称:HP&ML studio] V1.0

(10)基于BP神经网络的Fe-Mn-Al-C低密度高强钢力学性能预测系统[简称:FMAC-NET] V1.0

(11)钙钛矿材料带隙智能预测系统[简称:PBGPM] V1.0

(12)耦合材料、结构和环境的装备定位预测软件[简称:OceanTracer] V1.0

代表性专利

(1) ULTRALIMIT ALLOY AND PREPARATION METHOD THEREFOR,美国专利,专利号:US11,530,485 B2

(2)High throughput planetary ball mill,澳大利亚专利,专利号:2020103730

(3)一种复合抗氧化层铂基合金及其制备方法,ZL 202211603158.9

(4)一种耐高温缺陷型Y(YxTa1-x)O4-x氧障热障陶瓷一体化材料及其制备方法,ZL 202211020994.4

(5)一种高熵稀土钽酸盐氧离子绝缘体材料及其制备方法,ZL 202310043155.2

(6)一种(Ta, Nb, Hfx)2C中熵合金化碳化物陶瓷及其制备方法,ZL 202310964146.7

(7)一种可用于1300℃以上的新型铂铱基超高温多元合金粘结层及其制备方法,ZL 20211315817.4

(8)一种新型稀土钽酸盐铂铱基合金热障涂层、制备方法及应用,ZL 202210489694.4

(9)一种高通量粉体压制控制系统及高通量粉体压制方法,ZL 202210489492.X

(10)一种基于高熵硼化物析出强化钢及其制备方法,ZL 202210708814.5

(11)一种致密高熵稀土铌酸盐高温陶瓷材料、制备方法及应用,ZL 202210494873.7

(12)超强抗氧化耐腐蚀Pt基多组元合金及其制备方法, ZL 202111315816.X

(13)耐1400℃高强度抗蠕变Pt基高温合金,ZL 202111314314.5

(14)一种原位生成二元硼化物增强贵金属高温合金的制备方法,ZL202010879145.9

(15)一种原位生成钛锆硼化物强化高模量高硬度钢的制备方法,ZL 201610528604.2

(16)一种萃取工具钢中碳化物的简易方法,ZL 201610559044.7

(17)一种稀土增强钯合金及其制备方法,ZL201910550112.7

(18)一种高熵稀土增韧钽酸盐陶瓷及其制备方法,ZL201910526981.6

Copyright © 2024 All Rights Reserve  
昆明理工大学材料科学与工程学院 版权所有  
电话:0871-65109952  邮箱:clxyxsb@163.com  邮编:650093  
地址:云南省昆明市学府路昆明理工大学莲华校区材料楼6楼

关注公众号